TAVI: Radical and Revolutionary: Impact of TAVI in Low Risk Patients

Joseph E. Bavaria, MD

Roberts-Measey Professor of Surgery
Vice Chair, Division of Cardiovascular Surgery
University of Pennsylvania Medical Center
Philadelphia, PA
President-Society of Thoracic Surgeons (STS)

High Risk for Surgical AVR Patients STS score > 8

All-Cause Mortality or Stroke (ITT) (All Patients 5-yr

PARTNER Cohort A

1-Year outcomes published on-line June 5, 2011 @ NEJM.org and in print June 9, 2011

The NEW ENGLA JOURNAL of MED

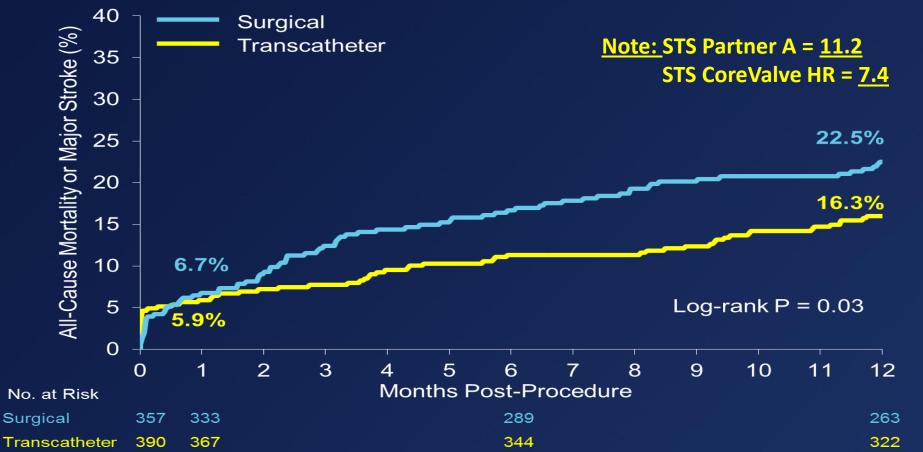
ESTABLISHED IN 1812

JUNE 9, 2011

Transcatheter and Surgical Aortic-Val in High-Risk Patients

Craig R. Smith, M.D., Martin B. Leon, M.D., Michael J. Mack, M.D., D. Craig Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, N Raj R. Makkar, M.D., Mathew Williams, M.D., Todd Dewey, M.D., Samir Kap Vinod H. Thourani, M.D., Paul Corso, M.D., Augusto D. Pichard, M Howard C. Herrmann, M.D., Jodi J. Akin, M.S., William N. Anderson and Stuart J. Pocock, Ph.D., for the PARTNER Trial Ir

2-Year outcomes published on-line March 26, 2012 @ NEJM.org and print May 3, 2012


ORIGINAL ARTICLE

Two-Year Outcomes after Transcatheter or Surgical Aortic-Valve Replacement

Susheel K. Kodali, M.D., Mathew R. Williams, M.D., Craig R. Smith, M.D., Lars G. Svensson, M.D., Ph.D., John G. Webb, M.D., Raj R. Makkar, M.D., Gregory P. Fontana, M.D., Todd M. Dewey, M.D., Vinod H. Thourani, M.D., Augusto D. Pichard, M.D., Michael Fischbein, M.D., Wilson Y. Szeto, M.D., Scott Lim, M.D., Kevin L. Greason, M.D., Paul S. Teirstein, M.D., S. Chris Malaisrie, M.D., Pamela S. Douglas, M.D., Rebecca T. Hahn, M.D., Brian Whisenant, M.D., Alan Zajarias, M.D., Duolao Wang, Ph.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., and Martin B. Leon, M.D., for the PARTNER Trial Investigators*

All-Cause Mortality or Major Stroke

ACC 2014

So Why a New TAVI trial into INTERMEDIATE RISK patients??

For all the Reasons explained The High Risk trials all showed equivalence to AVR. It is the next logical step

So the Real Question is Why NOT a New TAVI trial into INTERMEDIATE RISK patients??

Surgical AVR vs TAVI

Results of Partner 2 Randomized Clinical Trial in **Intermediate Risk patients** (STS = 4-8)No Difference!!

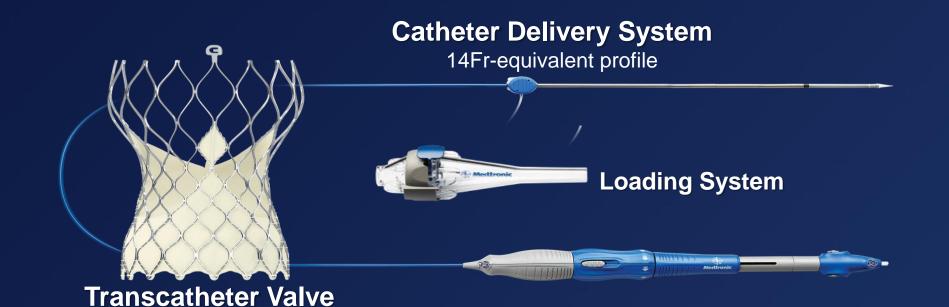
Intermediate Risk Patients STS score > 3-4 to 8

Also, We have "New Stuff"

SAPIEN 3 Transcatheter Heart Valve Distinguishing Features

Enhanced frame geometry for ultra-low delivery profile

Low frame height



Bovine pericardial tissue

Outer skirt to reduce PVL

CoreValve Evolut R System

Supra-annular design, optimized sealing

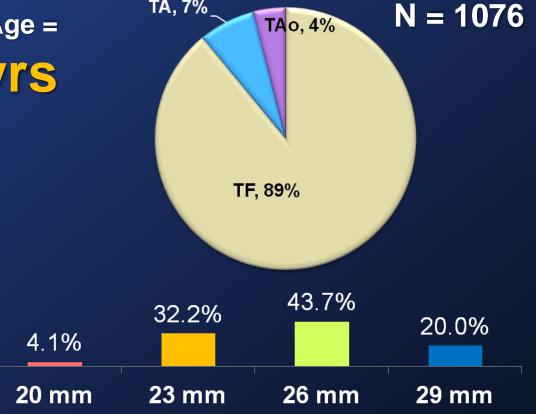
Clinical and Echocardiographic Outcomes at 30 Days with the SAPIEN 3 TAVR System in Inoperable, High-Risk and Intermediate-Risk AS Patients

Susheel Kodali, MD
on behalf of The PARTNER Trial Investigators

The PARTNER II S3 Trial: S3HR & S3i Top 10 Enrollment Sites

S3HR			S3i		
	Cedars-Sinai Medical Ctr. Los Angeles, CA	73	Cedars-Sinai Medical Ctr. Los Angeles, CA	106	
	Columbia University Medical Ctr. New York, NY	65	University of Pennsylvania Philadelphia, PA	66	
	Emory University Atlanta, GA	63	Emory University Atlanta, GA	62	
	University of Pennsylvania Philadelphia, PA	43	University of Texas, Houston Houston, TX	52	
	Heart Hospital Baylor Plano Plano, TX	30	Columbia University Medical Ctr. New York, NY	48	
	Ochsner Hospital New Orleans, LA	26	Heart Hospital Baylor Plano Plano, TX	46	
	University of Texas, Houston Houston, TX	25	Cleveland Clinic Foundation Cleveland, OH	41	
	Stanford University Medical Ctr.	24	Newark Beth Israel Medical Ctr.	38	

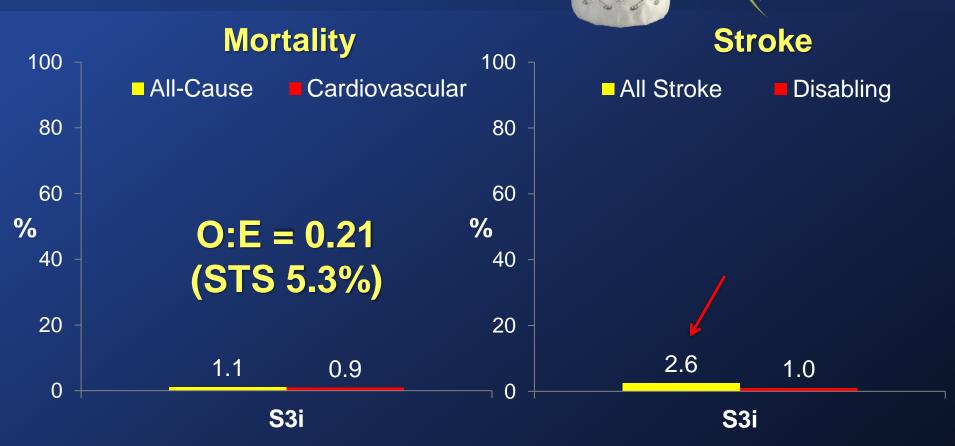
Baseline Patient Characteristics S3i Patients (Intermediate Risk STS 4-8)


Average STS = 5.3% (Median 5.2%)

> **Female** 38%

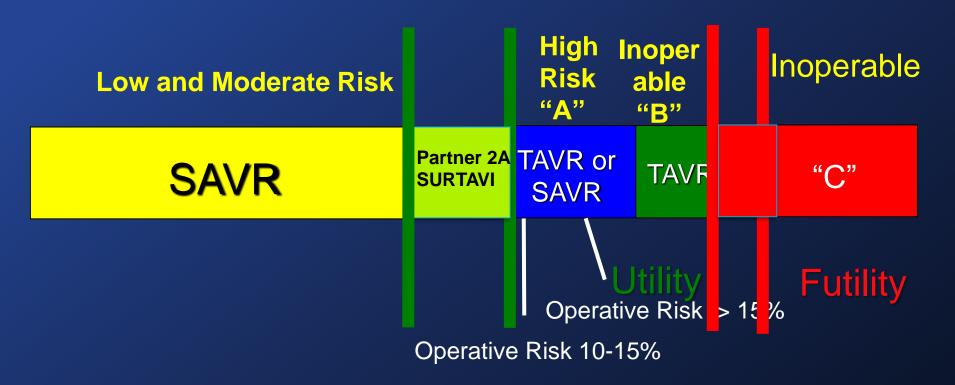
> > Male

62%


Average Age = 81.9yrs

TA, 7%

Mortality and Stroke: S3i


At 30 Days (As Treated Patients)

PARTNER II

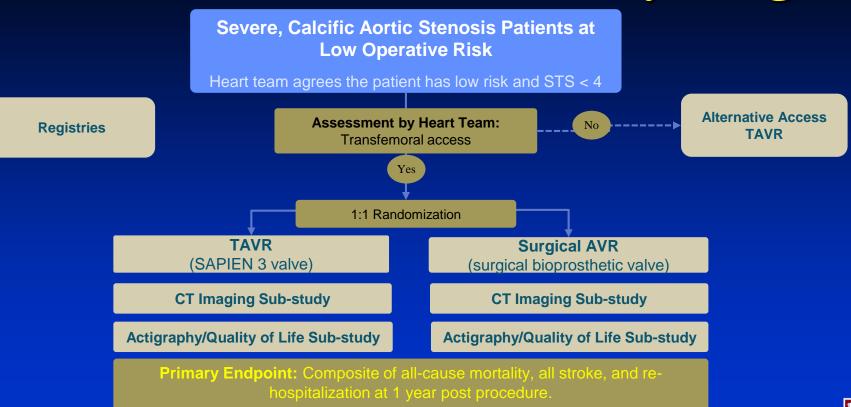
Just Happened: Treatment of Aortic Stenosis

Adapted from S. Kodali and M. Leon

CoreValve US Clinical Trials

Subgroup Analysis

2-Year All-Cause Mortality or Major Stroke All-Cause Mortality or

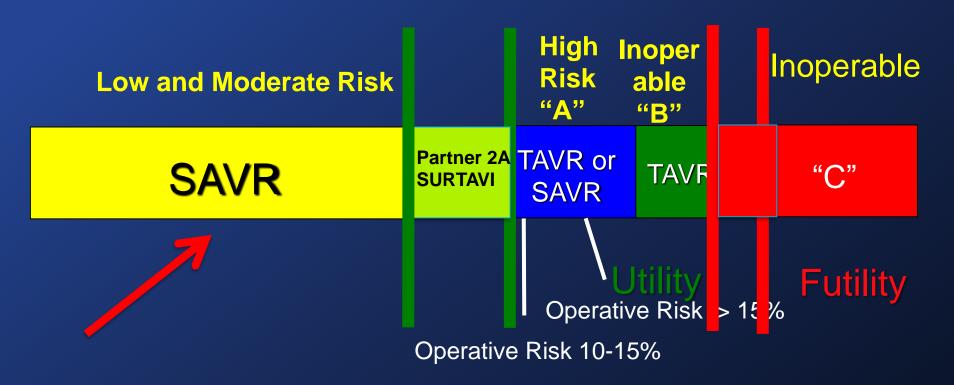

	Patients	KM (%) 2-Yr (95% CI)	Major Stroke (38.0% at 2 Years)	P Value
Gender				0.1809
Female	255	35.1 (29.2, 41.0)		
Male	234	41.0 (34.7, 47.4)		
Age				0.4647
≤85	263	36.9 (31.0, 42.8)		
>85	226	39.2 (32.8, 45.7)	- - -	
NYHA	10			(V-Fit
H .	40	30.3 (15.9, 44.6)		
III	313	38.1 (32.7, 43.6)		0.3805
IV	136	39.9 (31.7, 48.2)		0.3282
LVEF				0.1706
≥40%	404	36.8 (32.0, 41.5)	 -	
<40%	83	43.6 (32.9, 54.3)		9.00
STS Score				
<10%	272	35.8 (30.1, 41.6)	 -	
10-15%	133	34.4 (26.2, 42.5)		0.8008
>15%	84	50.7 (39.9, 61.5)		0.0120
TCT 2014				18

So NOW the Real Question is Why Not a New TAVI trial into LOW RISK patients??

The PARTNER 3 Trial Study Design

Follow-up: 30 day, 6 months, and annually through 10 years

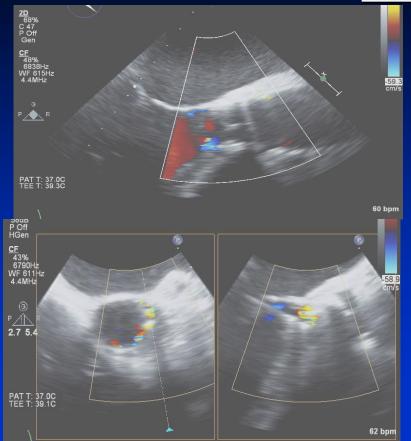
Some Key Exclusion Criteria in the FDA Trials

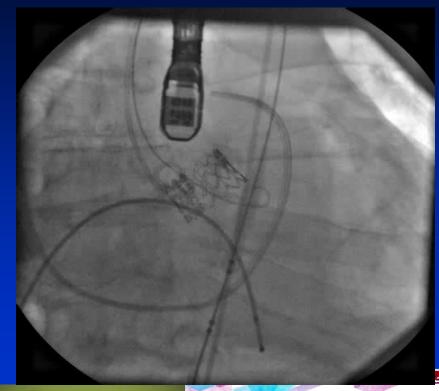

- Iliofemoral vessel characteristics that would preclude safe passage of the introducer sheath
- Evidence of an acute myocardial infarction ≤ 1 month (30 days) before randomization
- Aortic valve is unicuspid, bicuspid, or noncalcified
- Severe aortic regurgitation (>3+)
- Severe mitral regurgitation (>3+) or ≥ moderate stenosis
- Complex coronary artery disease:
 - Unprotected left main coronary artery
 - Syntax score > 32 (in the absence of prior revascularization)
 - Heart Team assessment that optimal revascularization cannot be performed

- Symptomatic carotid or vertebral artery disease or successful treatment of carotid stenosis within 30 days of randomization
- Leukopenia (WBC < 3000 cell/mL), anemia (Hgb < 9 g/dL), Thrombocytopenia (Plt < 50,000 cell/mL), history of bleeding diathesis or coagulopathy, or hypercoagulable states
- Hemodynamic or respiratory instability requiring inotropic support, mechanical ventilation or mechanical heart assistance within 30 days of randomization
- Hypertrophic cardiomyopathy with obstruction (HOCM)
- Ventricular dysfunction with LVEF < 30%

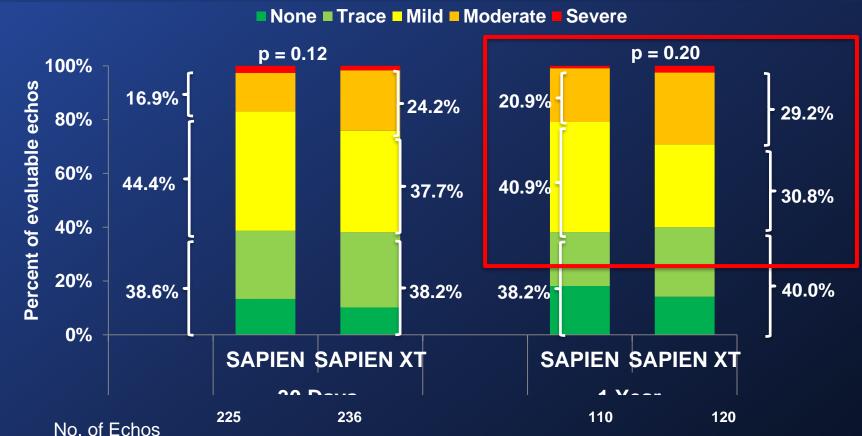
The Near Future: Treatment of Aortic Stenosis

Adapted from S. Kodali and M. Leon

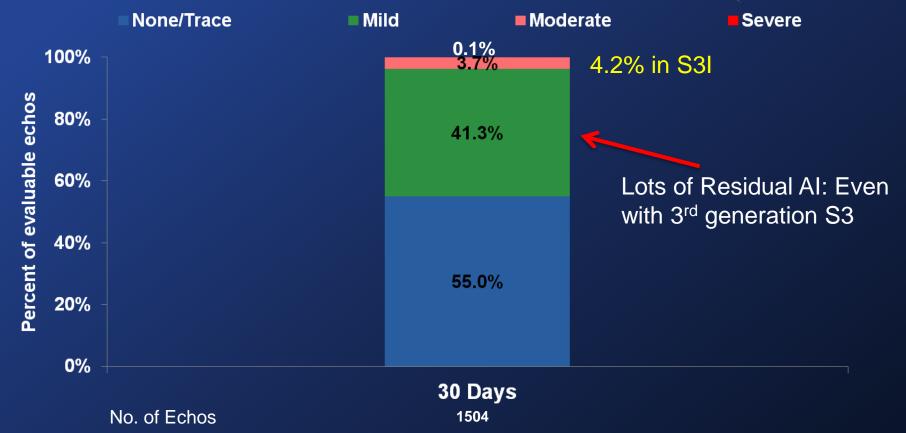

A few problems must be solved with TAVI, especially for application into LOW RISK Patients


But I think they will be solved!

What about TAVR Post Procedural AI: Will it be tolerated in LOW RISK patients??



Paravalvular Aortic Regurgitation (AT, Valve Implant)


Paravalvular Regurgitation (For Corevalve)

Paravalvular Leak: S3HR & S3i

(Valve Implant Patients)

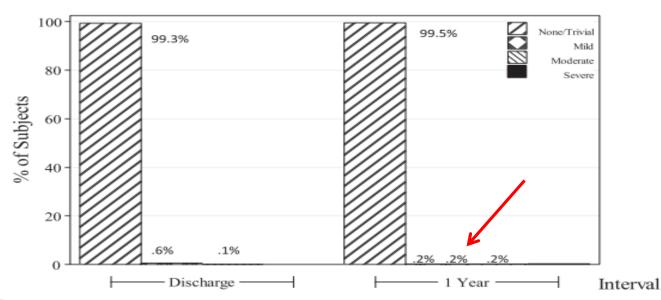
Clinical Performance Evolute CE Mark

Event, %	N=60
Absence of procedural mortality	100.0 (60/60)
Correct positioning of 1 valve in proper location	98.3 (59/60)
Mean gradient < 20 mm Hg or peak velocity < 3m/sec	98.3 (59/60)
Absence of moderate or severe regurgitation	93.3 (56/60) 6.7%
Absence of patient prosthesis mismatch*	83.6 (46/55)
VARC-2 device success [†]	78.6 (44/56)

*Effective orifice area could not be determined in 5 patients to calculate patient prosthesis mismatch.

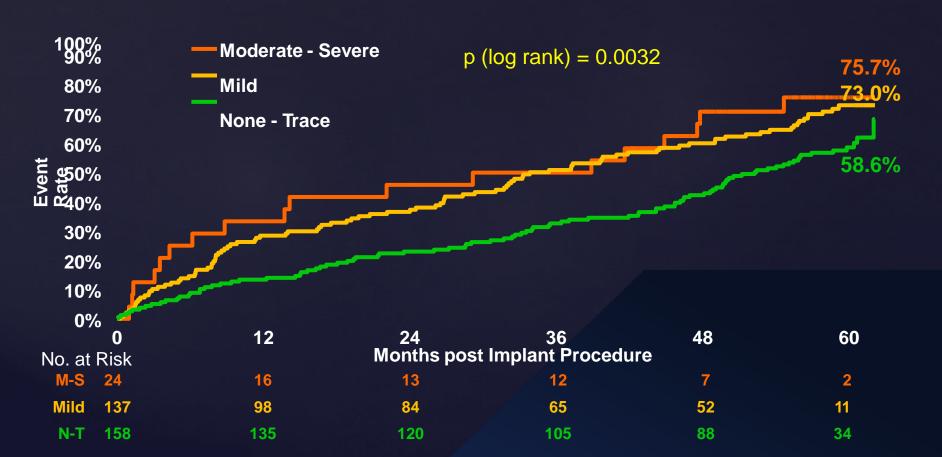
[†]First time reporting of device success according to VARC-2 criteria

Source: Meredith IT, et al. Early Results from the CoreValve Evolut R CE Study [2101-295]. Presented at the Annual Meeting of the American College of Cardiology. March 14, 2015.


The St Jude Medical Trifecta aortic pericardial valve: Results from a global, multicenter, prospective clinical study

Joseph E. Bavaria, MD, a Nimesh D. Desai, MD, PhD, Anson Cheung, MD, Michael R. Petracek, MD, Mark A. Groh, MD, Michael A. Borger, MD, and Hartzell V. Schaff, MD

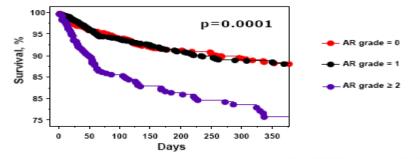
FIGURE 12. Paravalvular leak over time.


N=1,016 patients

STS = 4.02

Mortality and Post Procedural PVL TAVR Patients

2012


\underline{FR} ench \underline{A} ortic \underline{N} ational \underline{C} orevalve and Edwards Registry

Predictor of 1-year Mortality Multi-variate analysis

	Hazard ratio	95% CI
Logistic EuroScore	1.37	1.19- 1.58
(Increased 1%)		
NYHA	1.49	1.09- 2.03
(Class III or IV vs Class I or II)		
TA vs TF	1.45	1.09- 1.92
AR ≥ 2 vs ≤ 2/4	2.49	1.91- 3.25

>+1 AI is Bad!

1 year Actuarial mortality according to post-procedural aortic regurgitation

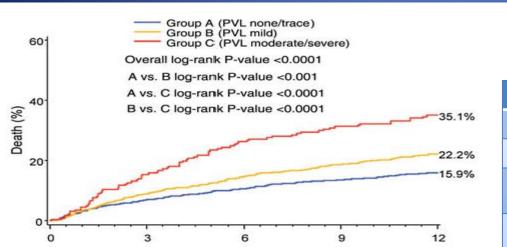
Valvular Heart Disease

Incidence and Predictors of Early and Late Mortality After Transcatheter Aortic Valve Implantation in 663 Patients With Severe Aortic Stenosis

Corrado Tamburino, MD, PhD; Davide Capodanno, MD; Angelo Ramondo, MD;
Anna Sonia Petronio, MD; Federica Ettori, MD; Gennaro Santoro, MD; Silvio Klugmann, MD;
Francesco Bedogni, MD; Francesco Maisano, MD; Antonio Marzocchi, MD; Arnaldo Poli, MD;
David Antoniucci, MD; Massimo Napodano, MD; Marco De Carlo, MD, PhD;
Claudia Fiorina, MD; Gian Paolo Ussia, MD

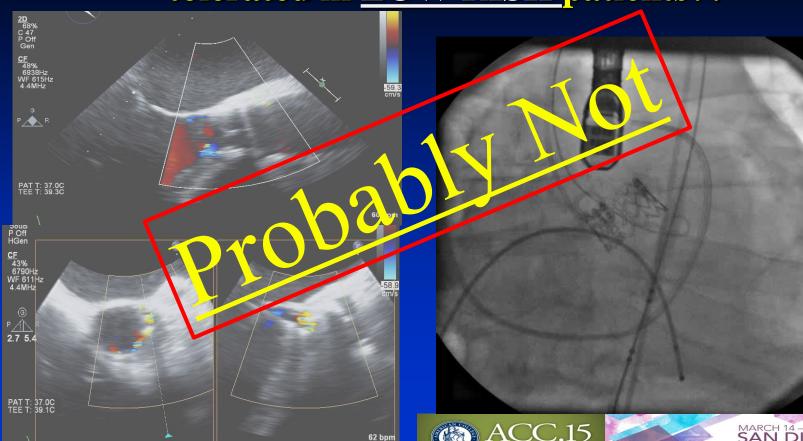
	Hazard Ratio	95% LCL	95% UCL	P Value
Late mortality				
Prior stroke	5.468	1.47	20.39	0.01
Post-procedural paravalvular leak ≥2+	3.785	1.57	9.10	0.003
Prior acute pulmonary edema	2.696	1.09	6.68	0.03
Chronic kidney disease	2.532	1.01	6.35	0.048
LCL indicates lower confidence limit: LCL indicates upper confidence limit				

>+1 AI is Bad!

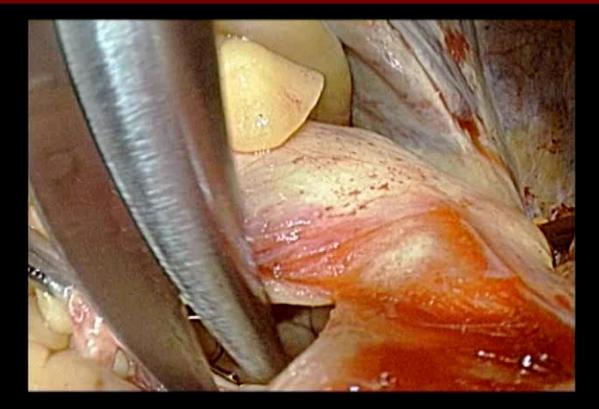

iower confidence iinnit, oct indicates upper confidence iinnit

Paravalvular Leak: Dilate, Plug or Watch?

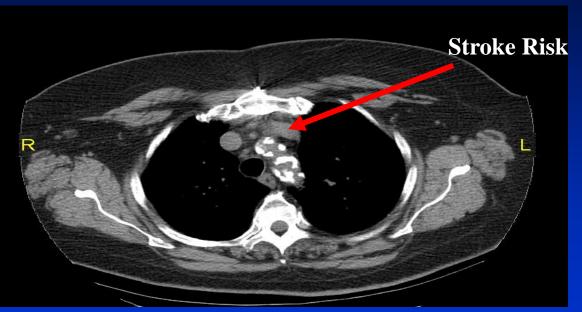
Mild or Moderate PVL: Should I be concerned?



Variable	HR	95% CI	P-value
Arrhythmia	1.41	1.14-1.75	0.002
TF vs TA	0.73	0.59-0.91	0.005
AV annular diameter	1.07	1.03-1.11	0.001
AV mean gradient	0.98	0.97-0.99	<0.0001
Mild PVL	1.35	1.07-1.72	0.013
Mod/Sev PVL	2.20	1.6-3.03	<0.0001
Creat <u>></u> 2	1.35	1.04-1.74	0.023
ВМІ	0.95	0.93-0.97	<0.0001

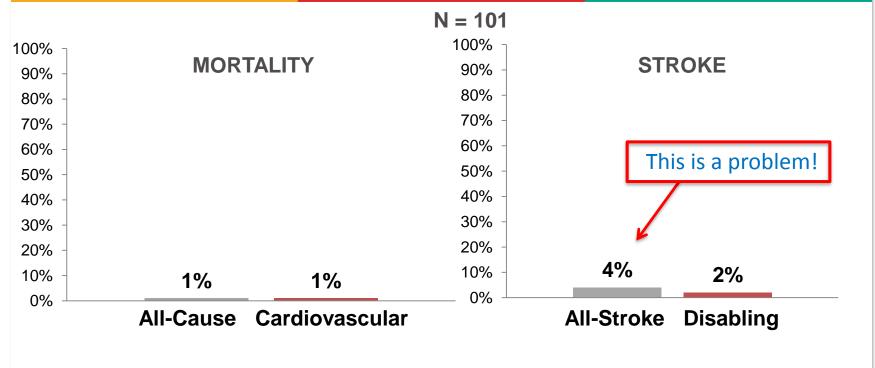


What about TAVR Post Procedural AI: Will it be tolerated in LOW RISK patients??


Conversion: Residual AR 2-3 + after TAVI Valve explantation

What about TAVR Post Procedural <u>CVA</u>: Will it be tolerated in <u>LOW RISK</u> patients???

Extensive Cerebral Vessel Calcium and Atheromatous disease off the Aortic Arch


The <u>High Initial TF stroke risk</u> is coming down with both experience and improved devices

SAPIEN 3 CE IR Clinical Outcomes at 30 Days

ALEC VAHANIAN, MD

HÔPITAL BICHAT
PARIS, FRANCE
ON BEHALF OF THE SAPIEN 3 INVESTIGATORS

What about Pacemakers??

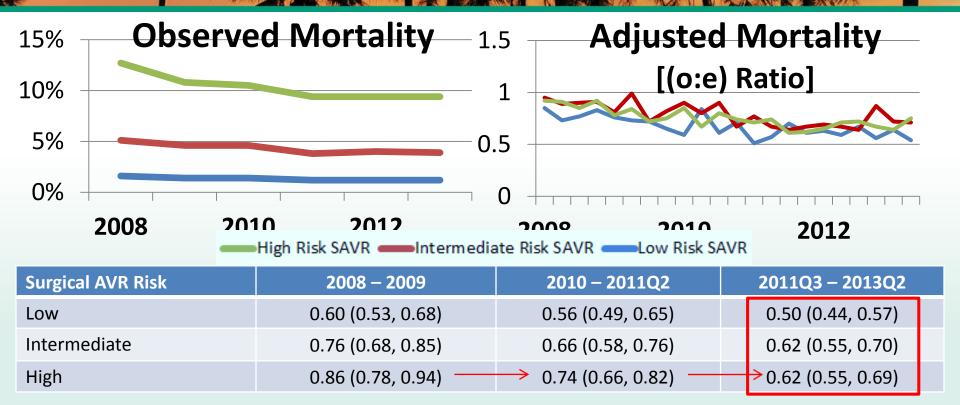
CoreValve US Clinical Trials

Secondary Endpoints

Events*	1 Month	1 Year
Any Stroke, %	4.0	7.0
Major, %	2.3	4.3
Myocardial Infarction, %	1.2	2.0
Reintervention, %	1.1	1.8
VARC Bleeding, %	36.7	42.8
Life Threatening or Disabling, %	12.7	17.6
Major, %	24.9	28.5
Major Vascular Complications, %	8.2	8.4
Permanent Pacemaker Implant, %	21.6	26.2
Per ACC Guidelines, %	17.1	19.2

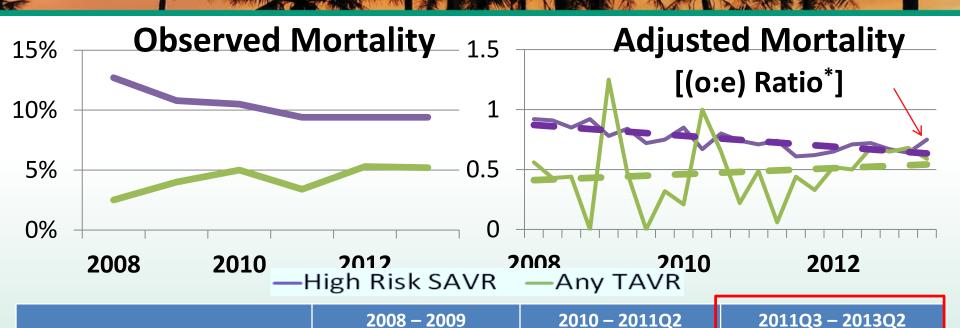
TCT 2013 LBCT (JACC 2014)

Other Clinical Events Intermediate Risk


At 30 Days (As Treated Patients)

Events (%)	S3HR Overall (n=583)	S3HR TF (n=491)	S3HR TA/TAo (n=92)	S3i Overall (n=1076)	<mark>S3i</mark> TF (n=951)	S3i TA/TAo (n=125)
Major Vascular Comps.	5.0	5.3	3.3	5.6	5.9	3.2
Bleeding - Life Threatening	6.3	5.5	10.9	5.4	4.4	12.9
Annular Rupture	0.3	0.2	1.1	0.2	0.2	0
Myocardial Infarctions	0.5	0.4	1.1	0.3	0.3	0
Coronary Obstruction	0.2	0	1.1	0.4	0.4	0
Acute Kidney Injury	1.0	0.8	2.2	0.5	0.3	1.6
New Permanent Pacemaker	13.0	13.2	12.0	10.1	10.4	7.2
Aortic Valve Re- intervention	1.0	0.8	2.2	0.7	0.8	0
Endocarditis	0.2	0.2	0	0.1	0.1	0

However, Therapy with Surgical AVR is also steadily improving especially recently



^{*}o:e Ratio calculated using STS PROM calibrated for yr2007 *p<0.0001 across intervals

Statement of the statem

STS 50th Annual Meeting

High Risk SAVR (o:e*)	0.86 (0.78, 0.94)	0.74 (0.66, 0.82)	0.62 (0.55, 0.69)
Any TAVR (o:e*)	0.38 (0.18, 0.69)	0.36 (0.22, 0.54)	0.61 (0.55 <i>,</i> 0.66) [†]
*o:e Ratio calculated using S	† p<0.0001		

Transcatheter Aortic Valves: The Future Is Coming!

We will wait for the Low Risk Trials to Report ... but

The TAVI Heart Team

Multi-Disciplinary TAVI TEAM Approach in Hybrid OR

Interventional Cardiology assisting Cardiac Surgeon: TF case

THE MORISON

Cardiac Surgeon assisting Interventional Cardiologist: TF Case

Now, More Junior Cardiac Surgeons and Interventional Cardiologists Doing Procedure

Weekly Penn Aortic Valve and TAVI Conference: Choosing the RIGHT and Proper Therapy for the Patient

Thank you!

